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ABSTRACT 
 One of the primary challenges for sustainable development in semi- 
 arid regions like Egypt, is the scarcity of freshwater, making it 
 critical to assess groundwater potential. The purpose of the current 
 study is to predict spatially potential groundwater zones in Suez 
 Governorate (SG), Egypt using (relative frequency prediction rate) 
 integration and Shannon entropy (SE) bivariate statistical models. 
 Sixteen causal   factors   affecting   groundwater   instances   were 
 assessed in terms of geo-environmental. The results obtained from 
 the current study revealed that these two models can be effectively 
 working for spatial prediction modeling. Furthermore, the RF-PR 
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depth to water table respectively. Following by validation analysis 

of AUCs for both relative frequency-prediction rate and Shannon's 

models are 0.749 and 0.745, correspondingly, representing that RF- 

PR outperforms the Shannon's. Finally, groundwater potential 

zones prediction maps (GPZPm) obtained from both models were 

categorized into five classes. Current research results are useful for 

multi-criteria decision makers such as water resources authorities 

and decision architects to broadly assess the groundwater 
 investigation for future planning. 
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1. Introduction 

 
Groundwater represents one of the most important resources of 

natural stocked in underground strata in critical regions of the earth's 

crust (Fitts, 2012). Human survival, sustainable development and 

safety on earth depend on water (World Health Organization, 2010). It 

assists as a basis of water for native, agricultural and industrial usages 

and other growing initiatives (Ayazi et al., 2010; Nampak et al., 2014; 

Elbeih, 2015). Worldwide, groundwater delivers drinkable water to at 

least 50 percent of the global people & accounts for 43 percent water 

of the irrigation (Water, 2015). For a country like Egypt, groundwater 

is the second most significant source of freshwater. (Abd Ellah, 2020), 

and accounting for approximately 20 percent of Egypt's total water 

resource possibility (A. R. Allam et al., 2003). As a result, food 

security includes a high demand for potable water, as one of the 

Sustainable Development Goals (SDGs(, that is, to guarantee the 

availability and long-term management of water and sanitation (U.N, 

2018). Under the influence of global change events, it is believed to 

be a major basis of forthcoming water supply, farming, irrigation and 

food fabrication (Clifton et al., 2010). Despite huge groundwater 

reserves, many countries face supply crisis and need to pay extra 

attention. Major aquifers of groundwater around the sphere are under 

burden to encounter the increasing water demands of growing 

inhabitants (Shahid & Hazarika, 2010) .Sustainable supervision of 

groundwater resources is a major challenge. One of the purposes of 

assessing groundwater resources is to deliver info on the existing state 

of reserve & gain insight into future groundwater availability (Reilly 

et al., 2008). Delineating the groundwater accessibility requires 

calculating the amount of groundwater in a region/aquifer. 

Groundwater is highly localized and spatially variable in the Aquifer. 

Groundwater movement and generation are determined by many 

factors, including topography, lithology, fissures, weathering, depth, 
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porosity, drainage, soils, climatic environments, and interrelationships 

among these elements. By properly estimating these parameters, we 

can fully understand the groundwater body (Selvam et al., 2014). 

Geospatial methods are one of most popular approaches for 

rapidly delineating possible groundwater bodies in subsurface 

(Solomon & Quiel, 2006; Saha et al., 2010; Elewa & Qaddah, 2011). 

Geospatial methods are simpler, more consistent, and less expensive 

than traditional methodologies such as boreholes, hydrogeological, 

geological field studies, and geophysical approaches in assessing 

groundwater resources (Jha et al., 2010; Thapa et al., 2017a; 

Arulbalaji et al., 2019). 

Various varieties of data & thematic maps can be used to 

identify potential groundwater areas, like satellite imagery, geological 

data, soil data , drainage data, & precipitation data (Machiwal et al., 

2011; Srivastava et al., 2012; Lakshmi & Reddy,2018). Recently, 

numerous researchers have struggled to describe accessibility of 

groundwater using a variety of facts and knowledge data driven 

methods in combination with remote sensing (RS) & (GIS). 

Approaches based on data and knowledge reflect the diverse outlooks 

on spatial modeling (Rajabi et al., 2014; Andualem & Demeke, 2019). 

A review of various literatures indicates that researchers have 

used a variety of methods to delineate potential groundwater bodies 

and map them. For example, some researchers apply probabilistic 

models such as: Multicriteria analysis (Akinlalu et al., 2017; Osinowo 

& Arowoogun, 2020), frequency ratio decision analysis (Elmahdy & 

Mohamed, 2015; Guru et al., 2017; Abu El-Magd & Eldosouky, 

2021), weight of evidence (Pourtaghi & Pourghasemi, 2014), analytic 

hierarchy process (AHP) (Mukherjee & Singh, 2020), logistic 

regression (Nguyen et al., 2020), artificial neural network models & 

weight of evidence (Corsini et al., 2009), Shannon's Entropy (SE) & 

random forest (RF) (Zabihi et al., 2015), RF & Maximum Entropy 
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(Rahmati et al., 2016). Frequency ratio analysis (FR) for delineating 

groundwater probable zones by using well sites as an indicator 

applied by (Pourtaghi & Pourghasemi, 2014; Trabelsi et al., 2019). 

Trabelsi et al., (2019) used a probability basis frequency ratio model 

on the ground-water prospective of Medjerda area (Tunisia), and 

outcomes indicated a fairly satisfactory accurateness of 86%. 

Application of the Shannon entropy model in the ground water 

demarcation performed well, achieving higher accuracy than the FR 

model, demonstrating the quality and capability of this model in 

generating Groundwater potential maps GPMs (Naghibi et al., 2015; 

Hou et al., 2018). 

Egypt is distinguished by its dry climate, low rainfall, desert 

terrain, and unreliable water resources (M. N. Allam & Allam, 2007). 

Egypt's water resource system is complicated and uncertain, so it is a 

great challenge and a need arises to address the rapidly wide gap for 

both limited water resources and increasing demand for freshwater. In 

modern times, Freshwater resources rank first among all natural 

resources on the earth. Fresh water is distributed in varying quantities 

everywhere (Abd Ellah, 2020). 

Egypt in general suffers from the deficiency of freshwater, with 

less than thousand cubic meters of available freshwater per capita per 

year. Egypt's water consumption rate is about (190) L/person/day. In 

contrast, the exemplary (Middle Eastern and North African) diet 

requires (294) L of water per person per day (Elbeih, 2015). 

furthermore, the unmanaged resident’s development takes this issue to 

the worst. The same issue requires a complete investigation program 

to assign potential groundwater zones in the Suez governorate NE of 

Egypt moreover a managed strategy to monitor and control the 

random exploitation of recognized groundwater aquifers. For this 

purpose, we planned to integrate the two approaches (RF-PR and SE) 

to assess groundwater potential in areas where no groundwater studies 
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have been conducted so far according to the researchers' knowledge, 

with the exception of the study conducted by Abu El-Magd & 

Embaby, (2021), which dealt with the )north-western( region the 

(Gulf of Suez). A weighted GIS-based model with a linear equation 

approach was used in this study. 

2. Geo - Characterization of Suez Governorate (SG) 

Geographically, Suez Governorate (SG) is one of (six) 

governorates in Egypt located within the Suez Canal zone, It is also 

one of Egypt's (seven) economic zones established by the Egyptian 

government through the General Organization for Physical Planning 

(GOPP) (GOPP, 2014). It is currently witnessing several activities 

aimed at expanding agricultural, industrial, and tourism lands. The SG 

is located approximately 138.8 km east of Cairo, at the head of the 

Gulf of Suez between latitudes 28°57′ 36.46” and 30° 17’ 13.68″ 

North and longitudes 31° 50′ 39.32”and32° 51′ 12.82″ East, with a 

total shape area of approximately 9175.6 km2. It is bounded on the 

north by the governorates of (Ismailia) and (North Sinai), on the south 

by the governorates of (Beni Suweif) & the (Red Sea), eastward by 

the governorate of (South Sinai), and on the west by the governorates 

of (Cairo) and (Giza). The SG consists of (21) villages. Figure .1. As a 

result, the province of Suez stands out geographically, as it is located 

at the exit of the Suez Canal, one of the most important navigational 

outposts. The province's importance grew after the canal's 

construction, particularly with the establishment of seaports such as 

Suez, Ain Sukhna, and Adabiya, which aided the province's 

diversification of activities (GOPP, 2014). 
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Figure. 1. geographic location of the SG. (Created by Egyptian General Survey 

Authority, scale 1 : 2000, 000, printed by the General Department of Topographic Maps 

in 2016, and it was reprinted in 2021/2020) . 

The topography of the region is distinguished by a variety of 

hills, valleys, lakes, and a gentle sloping. It is surrounded on the north 

by the Gebel Ataqa and Jinifa, to the north-west by the Great and 

small bitter lakes, to the south by the (El Galala El Bahariya) plateau, 

and to the north-east by the (Gulf of Suez) Figure. 1. Many valleys 

descend from the Ataqa and Jinifa mountains and the (El Galala El 

Bahariya) plateau in the study area. These valleys involve Ghweiba, 

El Badaa, Okheider, Hommath, and Hagoul (Youssef et al., 2011). In 

general, the land surface in the SG inclines toward the Suez Canal, 
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peaking as it rises over 1200 metres above sea level in the 

governorate's west and falls to -19 metres below sea level in the Gulf 

of Suez. Figure .1. 

various studies were conducted about the geological and 

hydrogeological conditions around SG (El Osta et al., 2010; El-Omla 

& Aboulela, 2012). Geologically, most of the unveiled rocks units 

overlay the SG are all sedimentary origin (El-Behiry et al., 2006). 

They extend in age from the Upper Carboniferous to Quaternary. 

(Upper, middle, lower Eocene deposits), Quaternary deposits and 

Miocene deposits are the more broadly rock units in this region. The 

Maadi Formation deposits of the upper Eocene appear in the central 

part of the Governorate; these deposits are composed of limestone and 

marl with some shale intrusions. Middle Eocene deposits, consisting 

of limestone, marl, and calcareous sandstone, appear in the centre and 

south of the SG. The Quaternary rocks are constituted by 

undifferentiated Quaternary sediments, which shrouded the valleys, 

alluvial fans and its coastal plain, including sand and gravel, the low 

area below the besetting mountains, thus, they access the coastline 

with sediments containing Sabkha sediments (consisting of silt, clay, 

evaporites), stabilized dunes and valleys sediments. The Miocene 

deposits that are exposed in the north and center of the SG, they 

composed of sand, gravel, limestone, marl, and some clay intrusions. 

Figure 8 (o) displays the details. 
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Figure. 2. samples wells of the SG 

Hydrogeological, in SG, groundwater is mainly encountered in 

two several water-bearing aquifers (Salim, 2012): (a) the granular 

aquifers, The study area occupies parts of its coastal aquifer (It returns 

to the aquifer of the Quaternary), with a free water table ranging in 

depth from (9.4 meter) within east to (39.9 meter) within north-west 
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(El Osta et al., 2010), is composed of graded sand dispersed with 

lenses of clay and gravel deposits (Abu El-Magd & Embaby, 2021). 

(b)The (Nubian Sandstone aquifer), It is of Paleozoic Lower 

Cretaceous age and is made up of (shale & sandstone layers). The 

drilling depth varies between zero to 500 metres. The salinity range of 

water is from (1 to 4 thousand ppm). The Fissured Carbonate Aquifer, 

it returns to various geological ages and is composed of shale & 

sandstone classes, the drilling depth ranges between zero to 500 

metres, and the water's salinity range is from (2,1 to 16 thousand ppm) 

(Hefny & Shata, 2004; Salim, 2012). 

Climatology, SG is part of Egypt's arid ring, which is 

distinguished by long & hot summers, moderate temperature in the 

winter, rare rains, and high humidity rates because of the continuous 

sunshine and evaporation. Its climate is described as a desert climate. 

The climate here is classified as Bust/waist/hip measurements (BWh) 

by the Köppen-Geiger system (Zaghlol et al., 2016). depending on 

Suez Meteorological Station, During the period (1980 to 2017), In the 

area, the average yearly air temperature is around (22.4°C). Summers 

are dry and hot, with an average temp of )30.1°C( in August. The 

coldest months are December to February, where the average temp 

drops to )18.2 °C( and the coldest months is January reaching 10.5°C. 

Wind overwhelmingly blows from north, northwest directions. The 

rainfall here mean 16.3 mm. The highest average annual amount of 

rainfall was recorded in the autumn season 7.2 mm, The annual 

average of humidity is 57%, the average annual evaporation is 8.8 

mm, the highest in August was 12.5 mm, and the lowest in January 

was 5.6 mm (Ahmed, 2018). Therefore, it is difficult to sustain rain- 

fed agriculture under these conditions (El-Kholei et al., 2004). 

3. Materials and methods 

Groundwater potential zones in the study site were assessed 

using GIS by creating and combine multiple thematic layers. Create 
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thematic layers for drainage density, lithology, topography, 

lineaments & slopes etc. Methodology section is classified into four 

steps: (1) 176 groundwater wells were preparing and were mapped in 

the SG (figure .2.). of the 176 wells sites, On the other hand, 27 wells 

were defined (topographical map at 1:50,000 scale of the military 

surveying authority, Egypt) and the remaining 149 well are collected 

from the previous studies distributed in the area (Abdel Samie et al., 

2005; Taha et al., 2005; Heikal, 2013; Snousy et al., 2016). These 

wells were split into (2) groups at random: Training & Testing data. of 

the 176 wells, 132 (70%) were chosen for training, with the residual 

44 (30 in percent) kept for verification. (2) Building a geospatial 

database as shown in Table 1 (3) The RF-PR and SE model are used 

to compute the weightage of groundwater potential factors. (4) results 

verification in a specific area is measured Groundwater prospects and 

accessibility by several interconnected factors, like lithology, structure 

in strata, landscape & climate. (Solomon & Quiel, 2006b; Chenini et 

al., 2010; Oh et al., 2011; Mogaji et al., 2016; Anbarasu et al., 2020). 

In this study, we evaluate sixteen factors for this purpose. The 

software (ArcGIS 10,5) was used to create the geospatial data, and 

Microsoft Excel was used to calculate the weights for all factors and 

associated functions. To validate the results, a graph showing the 

output of each achieved groundwater potential category was used, a 

raster calculator tool in ArcGIS 10.5 software was used to produce the 

final map of GPZPm. the methods adopted in the current study are 

presented on the flowchart (Figure. 3.) and they are summarized in the 

following sections: 



BSU International Journal of Humanities and social science 

(165) 

 

 

 
 

 

 

Figure. 3. the adopted methodology in the present study. 
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Table .1. 

the factors used to determine groundwater potential mapping. 
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4. Thematic maps 

Altitude of surface acts as an important role in the recharge of 

groundwater (Thapa et al., 2018). It is the main cause of water 

movement caused by gravity (Gebreyohannes et al., 2017). As a 

result, the research area's elevation map was split into five categories. 

Figure 4 (a). For the groundwater slope gradient is also one of the 

important parameters in favor of water infiltration (Magesh et al., 

2012). Areas with low slopes have low surface runoff & high 

infiltration rates (Bagyaraj et al., 2019). On the other hand, steep 

slopes favor rapid discharge of rainwater through runoff and drainage 

(Mogaji et al., 2015). The current research region was divided into 

five categories based on the degree of slope as shown in Figure 4 (b). 

The slope front facing side has a strong influence on hydrological 

parameters like evapotranspiration, precipitation direction, and 

weather process, particularly in dry and arid areas with little plant 

cover (Ercanoglu & Gokceoglu, 2002). Sides that rise from flat 

surfaces or gentle slopes allow settled water to pass fluidly, increasing 

infiltration capacity and resulting in more replenishment (Khan et al., 

2020) . Nine classes of aspect were created in the aspect map ash 

shown in Figure 4 (c). 

Plan curvature is described as the curvature of the contour line 

at the crossing of the horizontal surface and the ground, which 

influences potential for groundwater (Ding et al., 2017). and can be 

used to describe the divergence and convergence of flow and to 

distinguish between catchments and valleys guided by a zero-order 

hydraulic network (Catani et al., 2013). Likewise, surface curvature is 

significant because concave surfaces are best suited to holding surface 

water, which aids in recharging the zone. Plan curvature of our current 

research was categorized into three classes as shown in Figure 4 (d). 

Meles et al., (2020) explained that (TWI) is strongly related to soil 

wetness & groundwater levels and flow. The greater the (TWI) value, 
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the greater the prospect for groundwater (Mousavi et al., 2017; Kim et 

al., 2019). As shown, the (TWI) map was further classified into 4 

classes in Figure 5 (e) was calculated based on the succeeding formula 

(Zhou et al., 2020): TWI = ln (𝐴𝑆 / tan 𝑏), so AS = watershed area 

and (b) is the local slope. 

SPI measures the destructive force of water currents in a 

catchment (W. Chen et al., 2018). As a result, it is regarded as a factor 

influencing groundwater modelling potential. In this research, SPI 

map Figure 5 (f) was calculated based on the succeeding formula: 

𝑆𝑃𝐼 = 𝐴𝑆 ∗ tan 𝑏, so AS = watershed area and (b) is the local slope. 

Streams or rivers are the major sources of recharging the aquifers. As 

a result, the area which lies nearby streams is more potential for the 

groundwater (Rahmati et al., 2016; Arabameri et al., 2020). The 

drainage system's properties govern the rate of groundwater recharge. 

As a result, assessing drainage properties is essential for assessing 

groundwater resources. In overall, the tighter the (drainage system), 

the lower the renewal rate of aquifer. Low (drainage density) 

promotes groundwater infiltration & accumulation (Singh et al., 

2013).This map was classified into five classes as shown in Figure 5 

(g). The drainage density is indicated by the narrow spacing of 

channels (Waikar & Nilawar, 2014). The patterns and densities of 

drainage provide vital info about groundwater resources (Rajaveni et 

al., 2014; Nasir et al., 2018). In similar researches, areas with 

drainage distances were favoured for groundwater recharge prospects 

(Moghaddam et al., 2015; Naghibi, Pourghasemi, & Dixon, 2015; 

Khan et al., 2020). In the current research the drainage distance is 

further classified into five classes. Area with less than 200 m class 

reflects more chances of groundwater as compared to other classes as 

shown in Figure 5 (h). 

Lineaments originate from the tectonics events and define the 

surface geography and structural features of rocks/soil as well as raise 
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the secondary porosity where structural features are determined 

(Rajaveni et al., 2017). Lineament mapping is an essential element in 

hard rock regions where lineament features have a major influence on 

groundwater generation and movement (Singh et al., 2013). 

Moreover, numerous studies have revealed lineament density to be a 

significant determinant of groundwater recharge potential, like as 

(Selvam et al., 2016; Abijith et al., 2020). From Geology maps 

survey, linear features were determined, lineament density map was 

prepared and classified into six classes as shown in Figure 6 (i). 

In continuity to hydrological causes, precipitation is also 

regarded as the main source of groundwater recharge (Shekhar & 

Pandey, 2015; Allafta & Opp, 2021). Dense rainfall intensity leads to 

rise groundwater recharge (Kotchoni et al., 2019). Per year annual 

rainfall map was produced and categorized into fiver more classes like 

shown in Figure 6 (j). Land use/land cover has a significant impact on 

groundwater availability, and recharge (Zomlot et al., 2017; Dibaba et 

al., 2020) Furthermore, (LULC) maps were derived from Esri Land 

Cover 2021 Sentinel-2 L2A imagery at (10m) resolution based on 

deep learning (AI) land classification model Produced by Impact 

Observatory (IO), Microsoft, and Esri (Karra et al., 2021). These land 

use/land cover were classified into six further classes as shown in 

Figure 6 (k). In our study, the distance to road were classified into six 

classes with 1000 m intervals as shown in Figure 6 (l). In addition, 

soils can also influence infiltration rates, influence groundwater 

recharge (Oh et al., 2011; Etikala et al., 2019). Figure 7 (m) depicts 

the soil map of the region, which was classified into seven types of 

classes. Geomorphological properties provide critical information 

about groundwater availability such as groundwater movement and 

occurrence (Machiwal et al., 2011; P. Mukherjee et al., 2012; Selvam 

et al., 2014; Barik et al., 2017; Das, 2019). In this study, the 

topographic position index (TPI) map is first prepared for landform 

classification using the Jennes algorithm, which is implemented as an 
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ArcGIS extension by Jenness, (2006). The minimum & maximum TPI 

values for a 1500m scale are -297.734 and 362.275, respectively. 

Following the creation of the TPI map, the landform classification 

map was created. As shown in figure 7 (n), the topographic surface 

was classified into ten landform types, were applied in this article 

(Weiss, 2001). 

The physical appearance of the rocks/strata is referred to as 

lithology. Rock properties affect the movement of subsurface water. 

Geological/Petrological features set groundwater movement & 

porosity (Ayazi et al., 2010). The higher the lithic porosity, higher 

will be the groundwater storage capacity (Al Saud, 2010). Lithology 

is important in determining groundwater flux through channels, 

permeability, and occurrences (Zandi et al., 2016; Gnanachandrasamy 

et al., 2018). Lithology map in current research was categorized into 

twenty classes as shown in Figure 7 (o). Furthermore, depth to water 

table is an important parameter in groundwater studies (Agarwal & 

Garg, 2016; Arshad et al., 2020), In addition to aquifer geometry and 

properties, DWT can aid in determining groundwater flow direction, 

flow rate, and recharge (Shahinuzzaman et al., 2021). In our case 

DTW table map was classified into 5 classes with an interval of 10m 

as shown  in Figure 7 (p). 
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Figure 4: Altitude (a), Slope (b), Aspect (c), and plan curvature (d) 

map of study area. 
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Figure 5: Topographic wetness index (e), SPI (f), Stream density 

(g), and Stream distance (h) maps. 
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Figure 6: lineament density (i), Rainfall (j), Land use (k) and 

distance to road  (l) maps. 
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Figure 7: Soil (m), Landform types (n), lithology (o), and Depth to 

water table (p) maps. 
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Table 2 

Weight of various Factors obtained from FR, RF-PR and SE 
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Table 2. Cont. 
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5. Modeling Techniques 

 
5.1 Frequency ratio 

 
FR is a popular statistical method applied in geospatial 

assessment of probabilistic relationships among various variables 

(Razandi et al., 2015; Ahmadi et al., 2021). A number of researches 

have demonstrated the use of frequency ratios to determine local 

groundwater potential (Pourtaghi & Pourghasemi, 2014; Falah & 

Zeinivand, 2019; Das, 2019; Ahmadi et al., 2021). Based on the 

observed relationships and correlations between various conditioning 

factors, this model was built (Table 2). and can be expressed 

mathematically by (Pham et al., 2015; Acharya & Lee, 2019). 
𝑁𝑝𝑖 (𝐿𝑋𝑖)/ ∑𝑚   𝑁𝑝𝑖  (𝐿𝑋𝑖) 

𝐹𝑅 = 𝑖=1  (i) 
𝑁𝑝𝑖 (𝑋𝑗)/ ∑𝑛 𝑁𝑝𝑖𝑥 (𝐿𝑗) 

 

In equation 1, FR= frequency ratio of category (i) of (j) parameter. 

Npix (LXi) is equal to Number of wells pixels with category (i) of variable 

(X). whereas the Npix (Xj) are the pixels Number with variable Xi, and 

number of parameter represented by n. 

In the succeeding step, FR were standardized in range of possibility values 

like 0,1 as RF (relative frequency) and was calculated by equation (ii) 

𝑅𝐹 =
    𝐹𝑅𝑖𝑗  (ii) 

𝑚 
𝑖=1 𝐹𝑅𝑖𝑗 

After the standardization there was still drawback in equal weight of all 

factors, to slove this drawback prediction rate was calculated by using 

equation (iii), 

𝑃𝑅 = (
𝑅𝐹𝑚𝑎𝑥−𝑅𝐹𝑚𝑖𝑛)   (iii) 

𝑅𝐹𝑚𝑎𝑥−𝑅𝐹min 

Finally, the GPZPm (groundwater potential zones prediction maps) were 

calculated by equation (iv), 

𝐺𝑃𝑍𝑃𝑚 = ∑(𝑃𝑅 ∗ 𝑅𝐹) (iv) 

∑ 
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5.2 Shannon Entropy 

 
Generally, entropy indicates the degree of anomaly among 

events and outcomes or judgments on the numerous topics discussed 

(Wan, 2009; Amiri et al., 2014), where the entropy index is ratio of 

unit groups to system varied ratios and is defined as mean difference 

of uncertainties (Ihara, 1993; L. Chen et al., 2021). SE modified 

according to the Boltzmann technique was used as information system 

(Pourghasemi et al., 2012). SE model was applied on flood 

susceptibility (Yariyan et al., 2020) and for landslide vulnerability 

(Perera et al., 2019), leading to practical results. The resulting formula 

represents the embedded information of weight calculation. Vj is 

factor rank from the entire number (Bednarik et al., 2010) and is 

represented by 

𝐸𝑖𝑗 = 𝐹𝑅/ ∑𝑀𝑗 𝐹𝑅 (iii) 
 

In equation FR denotes the frequency ratio & Eij signifies probability 

density. 

𝐻𝑗 = − ∑𝑀𝑗 𝐸𝑖𝑗 log2 𝐸𝑖𝑗, j = 1, … , n, (iv) 

𝐻𝑗𝑚𝑎𝑥 = log2 𝑀𝑗, 𝑀𝑗−𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (v) 

 
𝐼𝐽 

 
= (𝐻𝑗𝑚𝑎𝑥 

−
    𝐻𝑗     ) (vi) 
𝐻𝑗𝑚𝑎𝑥 

 

𝐼 = (0, 1), 𝑗 = 1, . ., (vii) 

𝑉𝑗 = 𝐼𝑗𝐹𝑅, (viii) 

Finally, the GPZPm (groundwater potential zones prediction maps) 

were calculated by equation (ix), 

𝐺𝑃𝑍𝑃𝑚 = ∑𝑛 𝑧/𝑚𝑖 × 𝐶 × 𝑊𝑗 (ix) 
 

In the above equations, (Hj) & (Hjmax) are the values of 

entropy, and (Ij) is the data factor, M is the amount of classes. 

Furthermore, Vj characterizes the entire weight value achieved for 

factor which ranges from (0:1), with values near one indicating more 
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confusion and variation (Al-Abadi et al., 2016; Khosravi et al., 2018). 

(i) is amount of specific parameter map, and (z) is the amount of 

classes within the parameter map through highest amount of classes, 

along with (mi) is amount of classes in specific parameter map, 

whereas (C) is the assessment of category afterward secondary 

sorting, & (Wj) represents factor weights (Bednarik et al. 2010) 

6. Results and Discussion 

6.1 FR Interpretation 

 
In Frequency ratio interpretation higher FR reveals the 

important spatial association of training factors with the GW 

occurrences (Al-Abadi et al., 2016; Das, 2019), the standards greater 

than 1 display a resilient association and those lesser than 1 signify a 

weak association. The FR, RF and PR were used in current study to 

classify the association between each causal factors and GW 

occurrences as the outcomes are discussed in table 2. 

The obtained results reflects that the lesser the altitude, the 

greater the influence on groundwater resources. So, the classes below 

145 m with RF of 0.524 each have the most influence on groundwater 

resources. Moreover, slopes of < 4 with RF of 0.242 respectively have 

the most influence on groundwater resources. As for curvature, the 

flat curvature (0.396) has a strong influence on the GW resources in 

target area, which corresponds the nature of the groundwater 

resources. 

Therefore, runoff penetrates more in flat areas than in other 

areas. On slopes, the east receives less sunlight than other slopes, 

which has a greater impact on groundwater resources (0.137). 

Followed by southeast (0.150) and south (0.153). As a consequence of 

investigating the association between precipitation and groundwater 

using Relative Frequency, it was found that precipitation of 20-25 mm 

has a great influence on groundwater (0.337). For soil type, the RF 
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results with a value of (0.215) indicate that gravel sand and gravel in 

rocky outcroppings with dunes have a significant impact on 

groundwater resources. It is worth noting that much of this zone is 

enclosed by the abovementioned soils. 

For the land use, results reveal that built-up areas have a 

significant impact on groundwater resources (0.722). As for geology 

conditioning factors, mainly evaporated and intercalated shale (0.395) 

has a major impact on groundwater as compared to shale and dark 

sandstone (0.126). But some regions don't have enough RF. 

Regarding distance to the road, the RF results display that only classes 

above 6000 m have no impact on groundwater resources, while 

distances below 500 m have a significant influence on groundwater. 

First class i.e < 500 m (0.292), impact on groundwater resources is 

greatest, the farther the road, the smaller the effect on groundwater 

resources. The distance to road results display that the first class, < 

500 m, has the greatest impact on groundwater and followed by class 

500-1500 m (0.228). Lineament density results show that the first 

class, 1 km/km2, has the greatest impact on groundwater, followed by 

classes 0.25-0.4 km/km2 (0.226).A TWI grade of >13 has a large 

impact on groundwater at RF (0.315) and a grade of <7 has a low 

impact of 0.123 over GW. SPI classes between 40 and 60 have a large 

impact on GW with RF values (0.237). Steam density classes 5.20 to 

6.93 can affect the GW with RF (0.417) value. The stream distance 

less than 200m have the greatest impact on groundwater distribution 

with RF (0.473), while other classes are negligible. Topography also 

plays an important role in groundwater distribution, as flat terrain has 

the largest impact on RF (0.140) in this study compared to other 

landscape features. Groundwater depth can affect groundwater, in 

which case class <10 has the highest RF (0.621). 

The concluding groundwater yield index of target area was 

acquired using equation (ii) and is shown on the map in Figure 8 (a). 

Using the natural break classification in GIS, the resulting GPZPm 
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were categorized as low, very low, moderate, high, & very high. As 

table 3 summarizes the areas occupied through each of these factor’s 

classes of RF-PR and Shannon entropy. Here, high-very high class 

covers area of 12% (1093 km2). Low, very low to moderate gradients 

occur within 88% (8013 km2) of target area, representing small 

efficiency of the aquifer system. 

6.2 SE model interpretation 

 
For current target area, SE model was also implemented to 

delineate the association among each training factor and GW 

distribution (Table 2&3). Weights evaluated of all the factors through 

SE which include Land use (0.210), geology (0.142), depth of water 

table (0.103), soil unit and stream distance (0.128) shows a highest 

impact as compared to all other factors evaluated. The assessed 

weights of SE for other training factors are as follows; Plan curvature 

(0.005), aspect (0.008), slope angle (0.014), altitude (0.070), TWI 

(0.014), SPI (0.004), stream density (0.051), lineament density 

(0.017), rainfall (0.059), distance to road (0.021), landform (0.027). 

The evaluated result shows that land use and geology have the highest 

impact, and the next are depth of water table, soil and stream distance. 

Normally, the most and the least vital factors for GW potentials in 

research area are lineament density, stream density, plan curvature 

and SPI, respectively. 

The outputs acquired from the SE model in target region Table 

.2., have shown that (altitude, geology, soil, & slope) were regarded as 

the more vital parameters prompting GW efficiency conditions. The 

final groundwater potential index map was established by using 

equation ix. The acquired GPZPm was also categorized into 5 classes, 

basis on natural break classification, Figure 8 (b). Final map reflects 

that high - very high classes spread over a zone of 13 % (1193 km2) 

and moderate, low to very low cover an area of 87 % (7915.12km2) 
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round about reliable with the outcomes of RF-PR model (Table 3) & 

(Figure 8 and 9 a.b). 
 

 

 
Figure 8: Final maps RF-PR (a) & SE (b) of GPZPm in study area. 
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Table 3 

 
Coverage zones of various groundwater potential regions 

 
 

 

 
 

 

 
 

Figure 9: Ratio of RF-PR and SE (a) with area coverage and total 

number of existing wells (b) in each potential zone. 
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7. Results Validation 

 
Predictive models (deterministic or probabilistic) require 

authentication earlier so that they can be used for forecasting 

requirements. Without validation, a model has no technical meaning 

(Chung & Fabbri, 2003). With reference to this, Curves of receiver 

operating characteristic (ROC) are commonly applied to study the 

value of both deterministic, probabilistic finding and prediction 

systems (Swets, 1988). ROC curve plots the model's sensitivity (the 

model correctly predicted the percentage of well pixels) and 1 

specificity (proportion of well pixels predicted versus total). AUC 

designates the value of a predictive structure in terms of system 

capacity to properly predict the incidence or nonoccurrence of 

predetermined actions (Devkota et al., 2013). The model's predictive 

ratio is good when AUC equal 1 to 9. Like very good ranges 0.8-0.9, 

next good 0.8 up to 0.7, with average 0.7-0.6, and bad ranges from 0.6 

to 0.5 (Yesilnacar & Topal, 2005). In the current research, AUC was 

obtained using the (roc) curve for both training (rate of success) & 

testing (prediction rate) for both models in a completely automated 

process using the (ArcSDM) extension, which was incorporated into 

ArcGIS Software (Wang et al., 2020). AUCs for both RF-PR and 

Shannon models are 0.749 and 0.745 (Figure. 10 a,b), 

correspondingly, indicating that RF-PR outperforms the Shannon's 

model. 

In addition, the GPZPm results were matched to the 

distribution of groundwater wells, rural communities, and agricultural, 

reclaimed lands east and west of the Suez Canal (north of the study 

area), which mirrored the GW overview. The GPZPm is compatible 

with these groundwater sustainability indicators (Figure. 11). 

Fieldwork and high spatial resolution satellite imagery were used to 

collect these indicators. 
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Figure 10: AUC for the RF-PR model (a) and SE model (b) with 

Gauge Chart. 
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Figure 11: The groundwater potential zones prediction map in area. )a-b-c 

images) obtained during field surveys, shows the suffering of reclaimed lands to 

access water and Google Earth images (d-e-g) were used to verify the good and 

very good potential zones for GW. The images display the distribution of the 

GW wells, rural communities, tourism and agricultural areas. 

8. Conclusions 

GW resources play a progressively important part in supply of 

water worldwide, whereas assessing these zones of groundwater 

potential is a hot topic for government officials, groundwater 

agencies, private planners, and land use developers. In current 

research, two data driven models, i.e., RF-PR, and SE were 

effectively applied to demarcate the GW potential of the Suez 

governorate. Sixteen groundwater controlling factors from spatial 
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databank (Lithology, landform, soil condition, lineament distance, 

drainage density & distance, slope, distribution of rainfall, plan 

curvature, aspect, DTW, distance to roads, elevation, land use/cover, 

SPI & TWI) were chosen and evaluated in the ArcGIS software & 

groundwater potential zones prediction maps (GPZPm) were 

acquired. Soil, depth to water table and land use/cover were ranked 

highest in RF-PR, and land use, lithology, and depth to water table 

were ranked high in SE model. Lastly, by using the afore-mentioned 

two models, two GW potential maps were created. Following by AUC 

curve presented that the two models show reflects almost of similar 

performance (AUC for RF-PR=0.749 and for SE AUC=0.745). The 

final conclusion of the current research was that both of the bivariate 

models are proficient to yield groundwater potential regions with very 

decent accuracy. Generally, the achievements of our current study 

revealed that the models examined could be applied effectively in 

spatial prediction modeling. The results of current study will help 

relevant authorities, water management, and policy makers to broadly 

assess GW exploration and environmental organization developments 

in Egypt's Suez governorate in future plans. 
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